A Local Radial Basis Function Method for the Laplace–Beltrami Operator
نویسندگان
چکیده
We introduce a new local meshfree method for the approximation of Laplace–Beltrami operator on smooth surface in $${\mathbb {R}}^3$$ . It is direct that uses radial basis functions augmented with multivariate polynomials. A key element this it does not need an explicit expression surface, which can be simply defined by set scattered nodes. Likewise, require expressions normal vectors or curvature are approximated using formulas derived paper. An additional advantage and, hence, matrix approximates sparse, translates into good scalability properties. The convergence, accuracy and other computational characteristics proposed studied numerically. Its performance shown solving two reaction–diffusion partial differential equations surfaces; Turing model pattern formation, Schaeffer’s electrical cardiac tissue behavior.
منابع مشابه
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملH-Adaptive Local Radial Basis Function Collocation Meshless Method
This paper introduces an effective H-adaptive upgrade to solution of the transport phenomena by the novel Local Radial Basis Function Collocation Method (LRBFCM). The transport variable is represented on overlapping 5-noded influence-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the variable are calculated from the ...
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملA Galerkin Radial Basis Function Method for the Schrödinger Equation
In this article, we consider the discretization of the time-dependent Schrödinger equation using radial basis functions (RBFs). We formulate the discretized problem over an unbounded domain without imposing explicit boundary conditions. Since we can show that time stability of the discretization is not guaranteed for an RBF-collocation method, we propose to employ a Galerkin ansatz instead. For...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2021
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-020-01399-3